

Upper-body motion planning on the REEM robot
Current state and future perspectives

Adolfo Rodríguez Tsouroukdissian
Presenter: Jordi Pagès

Overview

● First steps and usecases

● Retrospective

● Next steps

First steps

Q2 2010 Boxturtle

● Add dual-arm planning to REEM-H1

● Call arm_navigation from in-house codebase

● Did not use move_arm
– Why? we needed decoupled planning and execution

Usecase: Trajectory playback

● Plan collision-free motions between postures

Usecase: Trajectory playback

● Plan collision-free motions between postures

● Pre-recorded trajectories
– Collision-check recorded trajectory

– Prepend collision-free approach from current state to trajectory start

Usecase: Trajectory playback

● Plan collision-free motions between postures

approach trajectory pre-recorded trajectorycurrent state

motion planning collision checking

complete execution

● Pre-recorded trajectories
– Collision-check recorded trajectory

– Prepend collision-free approach from current state to trajectory start

Usecase: Trajectory playback

● Where was this used?
– Task transitions, interruption recovery

– Interactive motion triggers using joystick / tablet

task A end task B start

Usecase: Trajectory playback

<xml>
recorded motion parse add approach

pal API
controller

resample +
collision check

hardware

PAL-ROS conversions

arm_navigation

network

● Lessons learned:

– Setting up arm_navigation was “easy”, only config files

– Interface with in-house codebase was a considerable effort

– We fixed bugs twice in move_arm and our code

Usecase: Online trajectory generation

● Online joint trajectory sources (through IK)
– Object tracking / visual servoing

– Upper body teleoperation

● Constraints
– Executed trajectories should be collision-free

– Avoid abrupt stops, ie. 'klunk'

Usecase: Online trajectory generation

● Smooth-stop rejection filter (an effective hack)
– Input: Next trajectory waypoint (pos, vel)

– Append stop trajectory: first order dynamics

– Collision check: input + stop trajectory

– Rejection filter: Do not send command if in collision

t

q

now

not yet executed

new waypoint

stop trajectory

collision!

collision check

execute

Usecase: Online trajectory generation

● Smooth-stop rejection filtering (an effective hack)
– Input: Next trajectory waypoint (pos, vel)

– Append stop trajectory: first order dynamics

– Collision check: input + stop trajectory

– Rejection filter: Do not send command if in collision

Usecase: Online trajectory generation

<xml>
recorded motion parse add approach

pal API
controller

resample +
collision check

hardware

PAL-ROS conversions

arm_navigation

network

online reference IK add stop traj
collision check
rejection filter

ros API
controller hardware

network

● Controllers have ROS interface
– Feature parity with JointTrajectoryActionController

– Hard-realtime Orocos RTT implementation

Overview

● First steps and usecases

● Retrospective

● Next steps

Retrospective

arm_navigation

● 3+ years using it

● Very satisfied users

● Looking forward to MoveIt!

Let's review open issues...

Retrospective

● Motion planning usecases
– Similar problems encountered over and over

– Task context is often known by high-level coordinator

– Hard problems are infrequent (eg. narrow passages)

● Currently used tools
– Always plan from scratch, do not exploit experience

– Agnostic to task context

– Great for solving hard problems

not a great match!

Retrospective

Additional constraints

● Problem solved: for engineer ≠ for client

Retrospective

Additional constraints

● Problem solved: for engineer ≠ for client
– Continuous task execution: Less move-stop-think, move-stop-think

– Determinism: ~same problem → ~same solution

● Resource footprint: as small as possible

credit: Pastor et. al 2012 credit: Honda research 2011

Motion generation, motion recall

● Evaluation (Lopera et.al., Humanoids 2012)

– Motion generation: LazyRRT

– Motion recall: DMP

– Criteria: variability, computational load, generality

Motion generation, motion recall

Motion generation, motion recall

TODO: Exploit complementarity!

● Use motion recall when
– Task context is known

– Solution to similar problem is available

● Use motion generation otherwise

● Motion library (long term goal)
– Self maintaining

– Sparse

Overview

● First steps and usecases

● Retrospective

● Next steps

Next steps

● Motion planning with MoveIt!
– Embrace planners with optimality guarantees, faster trajectory filters

– Leverage runtime switching of planning/control joint groups

● Online trajectory generation
– Stack of Tasks (Escande et.al., 2012, in review - integration work in progress)

● Multi priority, multi end-effector IK
● Constraints: equality and inequality (joint limits, collision avoidance)

– Local collision avoidance: Leverage MoveIt! proximity query alternatives

● Control
– Unify hardware access, enter ros_control (work in progress)

Acknowledgements

● Intern power!
–

– Marcus Liebhardt: teleoperation

– Carmen Lopera: motion generation/recall

– David Butterworth: ROS tabletop grasping

– Hilario Tomé: all of the above plus more (now staff member)

● Jordi here, for presenting in my stead :)

	Slide 1
	Slide 2
	Slide 3
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 12
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 28

