Real-time Collision Detection and Motion
Planning in Dynamic Scenes

Dinesh Manocha
Department of Computer Science
UNC Chapel Hill

http://gamma.cs.unc.edu

Collaborators

Jia Pan (UNC Chapel Hill)
Chonhyon Park (UNC Chapel Hill)
Christian Lauterbach (UNC Chapel Hill/Google)

Sachin Chitta (Willow Garage)

loan Sucan (Willow Garage)

a Talk Organization

 Collision Detection/Proximity Queries

* Motion Planning in Dynamic Environments

e Talk Organization

 Collision Detection/Proximity Queries

* Motion Planning in Dynamic Environments

Collision & Proximity Queries

Geometric reasoning of spatial relationships among
objects (in a dynamic environment)

*F €9

Collision Detection Contact Points & Normals

Closest Points & Separation Distance Penetration Depth

Problem Domain Specifications

Model Representations

— polyhedra (convex vs. non-convex vs. soups)

— CSG, implicits, parametrics, point-clouds

Type of Queries

— discrete vs. continuous query

— distance vs. penetration computation
— estimated time to collision

Simulation Environments

— pairwise vs. n-body

| Prior work on Proximity Computations

e Fast algorithms for convex polytopes (1991 onwards)

 Bounding volume hierarchies for general polygonal
models (1995 onwards)

Deformable models & self-collisions (2000 onwards)

Use of GPUs and multi-core hardware (2005 onwards)

m Prior work on Proximity Computations

Multiple software systems

* |-Collide, RAPID, PQP, DEEP, SWIFT, SWIFT++, DeformCD,
PIVOT, Self-CCD,.....

e More than 110,000 downloads from 1995 onwards

* |ssued more than 55 commercial licenses (Kawasaki, MSC
Software, Ford, Sensable, Siemens, BMW, Phillips, Intel,
Boeing, etc.)

y i b B
(Sy Yy
or™ »

&) FCL: Motivation

= A new collision and proximity computation
library

— Flexible: different object types/ queries
— Extensible: adding new algorithms is easy

— Efficiency: similar performance with the best libraries

* Provide many functions from state-of-the-art
research, more in future

Human environments

- Clutter, dynamic obstacles
Data from 3D sensors

— Large number of points (~10k for laser scans, ~20k for
stereo)

Real-time computation important for fast online reactive
grasping, motion planning

Proximity computation important for many useful heuristics
In robotics

Efficient collision and proximity computation is essential for
any online robot operations in human environments

FCL Overview

Articulated
Body

Point Cloud

Traversal

Triangle Collision Node Collision
Mesh Object Manager

Initialization

Geometric
Shape

Time Frame ; ” Collision
Information Result

ﬁupported Functions (Dec. 2012)

(Discrete)
Collision
Detection

Continuous
Collision
Detection

Self Collision
Detection

Penetration
Estimation

Distance
Computation

Broad-phase
Collision

Download

;e\
]

 Independent code, but ROS interface is provided

- Available at http://gamma.cs.unc.edu/FCL

Collision/Proximity Computation on Sensor
Data

* Broad phase acceleration widely used for N-
body cases

 Many real-world applications need to handle
proximity computation for sensor data

Sensor Data

 Point cloud

e Output from laser/Kinect, etc.
e Cannot encode unknown regions

* Very large
* Octree (octomap [Hornung et al. 2013])

e Store point cloud in a compact manner
e Support multi-resolution

* Encode occupied/free/unknown regions

Broad Phase Algorithms

* The broad phase data structure is computed
offline and its performance does not influence
the online performance

— The objects can be added/removed/moving

— The broad phase data structure can be updated
and reused for a long time

Our Solution: Completely Avoid
Construction Overhead

* Directly collide with sensor data represented
by octree

Broa Pt ase L
Sensor data Proximity
Octree *0 Boxes Struc ure .
Algorithms

Cons.rucHon

(octree)

* Collision query time increases, but
construction time is zero

18

ms

OFRLNWRAUIONOXO

Result

Octomap Collision Performance

100 objects B time for one collision check

1 octomap with 7784 occupied cells M time for construction

M time for octomap to boxes

old pipeline new pipeline old pipeline new pipeline
primitives meshes

Implemented in Movelt! (http://moveit.ros.org)

19

With Active Sensing

Talk Organization

Collision Detection/Proximity Queries

Motion Planning Algorithms

* Random sampling-based ¢ Optimization-based
algorithms algorithms

Dynamic Scenes: Our Solutions

Design appropriate algorithms

Exploit commodity hardware

NVIDIA & AMD GPU Compute

Accelerators
AMD Radeon 7970 NVIDIA GTX 680

3.79 Single Tflops 3.09 Single Tflops
947 Double Gflops 1.1 Double Tflops
2048 Stream Cores 1536 CUDA Cores

Commodity Tera-Flop Processor (peak performance)

Heterogeneous Processing

3rd Generation Intel® Core™ Processor:
22nm Process

= L8t L
System
Agent&

Processor " - - :
Graphics ° ol rrrdeigm pndTeipe T Ticge | ncluding

: IDMI, Display |
— @nd Misc. /O] =

: Shared L3 Cache** |
: mz M B oo reern weee N HIH '
— i I Bl Bl B

1 G Memory Controller I/0

New architecture with shared cache delivering more performance and
energy efficiency

Can be programmed using OpenCL

Heterogeneous Processing
AMD Trinity APU

“TRINITY” APU WITH AMD DISCRETE CLASS GRAPHICS

DDR3 DIMMS

“Piledriver” Cores
— 2nd-Gen “Bulldozer” core (“Piledriver”)
— 3rd-Gen Turbo Core technology

“Piledriver*
x86 Cores

™
!

Y

Multiple Configurations
— Memory support up to DDR3-1866 (1600 for notebook)
— Low power DDR3 (1.25V) AMD HD Media
— Up to quad core and 4MB L2 Accelerator

J13jj013u09 Klowajy

2nd-Gen AMD Radeon™ DirectX® 11

— Up to 384 Radeon™ Cores 2.0 Platform Interfaces

HD Media Accelerator

— Accelerates and improves HD playback ‘—:‘P" ‘
— Accelerates media conversion 3 ’ i’,.'?éf&é"

— Helps Improve strea.mlng mgdla PCI> H___.m,
— Allows for smooth wireless video EXPRESS V 1
x16 PCle A-Series

Enhanced Display Support Chipset
— AMD Eyefinity Technology?® SATA VGA USB 2

H LPC HD AUDIO PCle 4x1
— DisplayPort 1.2 SPI CIR EEN

4 “Trinity” Reviewers Day | Under Embargo Until May 1532012 at 12:01AM ED

Can be programmed usmg OpenCL

GPU-based Sampling Algorithms

e Parallel PRM algorithm on GPUs
— G-Planner [Pan et al. 2010]

— 10-100x speed-up from
single-thread CPU algorithm

— PRM is GPU-friendly
* Alarge number of samples
* Independent computations
e Useful for multiple queries

PRM algorithm

{ Sample generation ‘

l s samples

L Milestone construction ‘

‘ m milestones (m<s)

{ Proximity computation ‘

l m milestones, m-k neighbors

Roadmap construction

{ Local planning

1 m milestones, e edges

L Query connection

l graph

{ Graph search ‘\

Query phase

27

AND Parallel RRT Algorithm

e Serial RRT
tree expansion

@ AND Parallel RRT
tree expansion

2

@ Generate nodes
which are too close

@ Worse effect on GPU algorithm

28

Maximal Poisson-Disk Sampling

Maximal property
Ve, € D, 3x; € Xt ||lx — x| < r

No uncovered region in the domain by disks of radius r

29

Our Approach

* Use maximal Poisson-disk samples in
parallel RRT tree expansion

— Empty-disk property
* Ensure nodes are not too close
— Maximal property

* Ensure samples cover the entire
space

— Perform random adaptive sampling

30

Precomputed MPS for Planning

Dispersion
The largest empty “ball” of unoccupied space

6(P, p) = sup min p(z, p)
reX PEFP

Dispersion of MPS < r

31

Parallel Poisson-RRT Algorithm

@ AND Parallel RRT Tree @ Poisson-RRT Tree

X goal

s

. . Xin . .
Y2 4 Y3
/ y3 Y2 < Y4
yi1 ,\Y4 V1
V

No nodes which are too close to each other

Experimental Results

* Implementation with CUDA (NVIDIA GPUs)

* Integrated in OMPL and ROS simulator
— 3D(6-DOFs) OMPL benchmarks
— HRP-4 robot planning(23-DOFs)

* System
— CPU: Intel Sandy Bridge i7-2600 (Single thread)
— GPU: NVIDIA Geforce GTX580

33

Experimental Results

@ Planning Time for OMPL Benchmarks

24.9x
25 7 ™ RRT (Single CPU core)
|
50 | | MGPUAND Parallel RRT 18,
GPU Poisson-RRT 16.1x
o _
sb 12.1x 12,
@
()]
&10 - 8.3
6.4x
5 4.2
O I T T
Absolute planning time Easy Cubicle AlphaPuzzle Apartment
for GPU Poisson-RRT 0.028s 0.361s 1.314s 11.877s

Experimental Results

@ HRP-4 robot planning (23 DOFs): Real-time RRT Planner

35

36

Optimization-based Planning Algorithm

@ Start from an initial trajectory

@ The trajectory is discretized into waypoints
qd1.41,---4N, 4G, based on a uniform time
interval

37

Optimization-based Planning Algorithm

@ Optimization objective function
N

min Z (C(Qi) + \|q7;_1 — 2q; + Qi+1H)

q1,---94N 5
: 1=1

C(Qi): Costs for q;(collisions, ...)
@ Static and dynamic obstacles

N
; lai-1 = 2ai + a1l . costs for

smoothness

@ Approximates the squared
acceleration

38
Planning in Dynamic Environments

@ Incremental Trajectory Optimization
@ Compute partial plan for the next execution step
@ Improve the trajectory during execution
@ Use the latest sensor information

predict model in [ty, t5] predict model in [t5, t;] predict model in [t3, t] predict model in [t,,]
PLANNING i PLANNING I :
1 7
I EXEC EXECUTION :tlme
I I I 1 P
I I I I I I |
I I I I I I I
I I I I I I L
I I I I I I |
I I I I I I |
I I I I I I I
ty A 1t A 1ty A | I U R thi1
<« L D] = Lt}

P

A

Parallel Trajectory Optimization

@ Parallel optimization of multiple trajectories

“@ Use Multiple threads
© Start from different initial trajectories
“ Trajectories are generated by quasi-random sampling

9 Exploits the multiple CPU cores (multi-cores) or GPU-
based cores (many-cores)

Parallel Trajectory Optimization

@ Parallelization improves the performance

@ Reduce the iteration time of the single optimization
“ Parallel collision checking and constraint handling

“ Parallel optimization of multiple trajectories reduces
the time to compute the first collision-free solution

Parallel Trajectory Optimization

Performance improvement with number of cores

Multi-core 1 core 426.357

CPU 1
> cores | 51463
4 cores & o7.473

Mani-core1 trajectory —522-739
GPU J

10 trajectories 1,012.881

0 200 400 600 800 1000 1200

Iteration / sec

Human-Like Environment: Real-Time Planning

43

Ackowledgements

@ Army Research Office
@ National Science Foundation
@ |ntel

@ Willow Garage

