3D Perception for Mobile
Manipulation with OctoMap

http://octomap.github.io

BURG

Armin Hornung
T —
SE

¢ , Humanoid
. Robots Lab

Joint work with K.M. Wurm, M. Bennewitz, C. Stachniss, W. Burgard University of Freiburg

3D Environment Representation for
Mobile Manipulation

= Integrate and store
multiple measurements

= Update map during
manipulation

= Reason about free and
unseen areas

= Memory-efficiency

Octree

Tree-based data structure

Recursive subdivision of
space into octants

Volumes allocated
as needed

Multi-resolution

OctoMap Framework

Based on octrees
Probabilistic representation of occupancy
Volumetric model of occupied and free space

Supports multi-resolution map queries

Lossless compression
Compact map files

OctoMap Framework

Open source (BSD) implementation as
C++ library available at octomap.github.io

Pre-built debian packages for ROS electric
to hydro, see www.ros.org/wiki/octomap

ROS integration in packages octomap_ros,
octomap_msgs, and octomap_server

Collision checks in FCL / Movelt!

Map Update

= Occupancy modeled as recursive
binary Bayes filter [Moravec '85]

P(n ‘ Zl:t) —
1—P(n|z) 1—P(n|z2:4-1) Pm)]

YT TPz POl zie1) 1-P(n)

= Efficient update using log-odds
L(n|z14) = L(n|z14-1) + L(n | 2)

Map Update

= Clamping policy ensures updatability rvguel '07]
L(n) € [Imin, Imax]

= Update of inner nodes enables

multi-resolution queries

L(n) = max L(n,)

= Compression by pruning
a node’s identical children

[Kraetzschmar '04] 7

Sensor Model for Single Rays

= Ray casting from sensor origin to end point
= Mark last voxel as occupied, all other voxels

on ray as free

= Measurements are integrated

probabilistically

= Implemented in OcTree: :computeRay(...)
and OcTree::insertRay(...)

4

V

sensor origin

s)

end point

Sensor Model for 3D Scans

= Sweeping sensor, discretization into voxels

= Planes observed at shallow angle may
disappear in a volumetric map

= Solution: Update each voxel of a point cloud
at most once, preferring occupied endpoints

= Implemented in OcTree::insertScan(...)

Accessing Map Data

= Traverse nodes with iterators

for (OcTree::leaf iterator it = octree.begin leafs(),
end=octree.end leafs(); 1it!= end; ++1t)

{ // access node, e.g.:

std::cout << "Node center: " << it.getCoordinate();

std::cout << " wvalue: " << it->getValue() << "\n";
}

= Ray intersection queries
" octree.castRay(...)

= Access single nodes by searching

OcTreeNode* n = octree.search(x,vy,z);
it (n) {

std::cout << "Value: " << n->getValue() << "\n";

10

Occupancy and Sensor Model

= Set occupancy parameters in octree

" octree.setOccupancyThres (0.5);
" octree.setProbHit (0.7); // ...setProbMiss (0.3)
" octree.setClampingThresMin(0.1); / ...Max(0.95)

= Check if a node is free or occupied

= octree.1sNodeOccupied(n);

= Check if a node is “clamped”
" octree.isNodeAtThreshold (n) ;

11

Map File Format

= Full probabilities encoded in

.ot file format

= Maximume-likelihood map
stored as compact
bitstream in .bt file

= Exchange as ROS
message: octomap_msgs
package

data child ptr

0.9 1

01 00 00 00 10 00 00 00
12

Map Visualization

= Native OctoMap
visualization:
octovis

= RViz:
= MarkerArray display from octomap_server
= octomap_rviz_displays
= Movelt planning scene

13

Memory Usage (Freiburg campus)

! | |

—a— Full 3D grid i
103 - a = No compression .
—a— QOctree compression g
g T -- @ -+ ML Octree compression | |
=107 | ' E
g g
E B N
> 100 | E

100 -

| | |

0.1 0.2 0.4 0.8 1 2
Resolution [m]

Update and Query Times

I

]
—+— Freiburg campus
- 4 = Freiburg campus, trunc.
—4— FR-079 corridor
«««p - FR-079 corridor, trunc.

Time [s]

0.2 0.4 0.6 0.8
Resolution [m]

Map update
(Avg. over 100000 points)

Time [ms]

50

40

I I
—+— Freiburg campus (20 cm)
- 4 = New College (20cm)
—4— FR-079 corridor (5 cm)

Depth cutoff

Traverse all leaf nodes

Example Use Case: Navigation in
Clutter with the PR2

[Hornung et al., ICRA '12]

Example Use Case: Localization
and Mapping with a Nao humanoid

Q wf

[Maier et al., HUMANOIDS '12]

Conclusion

= Memory-efficient map data structure based
on Octrees

= VVolumetric representation of occupied,
free, and unknown space

= Implementation of common map
functionality: sensor updates, raycasting, ...

= Open source implementation with
integration into ROS and Movelt!

= Code, mailing list, and example data sets
available at octomap.github.io

18

Thanks for your attention!

