
Armin Hornung

3D Perception for Mobile
Manipulation with OctoMap

http://octomap.github.io

TexPoint fonts used in EMF.
Read the TexPoint manual before you delete this box.: AAAAA

Joint work with K.M. Wurm, M. Bennewitz, C. Stachniss, W. Burgard

3D Environment Representation for
Mobile Manipulation

 Integrate and store
multiple measurements

 Update map during
manipulation

 Reason about free and
unseen areas

 Memory-efficiency

2

Octree

 Tree-based data structure

 Recursive subdivision of

space into octants

 Volumes allocated

as needed

 Multi-resolution

3

OctoMap Framework

 Based on octrees

 Probabilistic representation of occupancy

 Volumetric model of occupied and free space

 Supports multi-resolution map queries

 Lossless compression

 Compact map files

4

OctoMap Framework

 Open source (BSD) implementation as
C++ library available at octomap.github.io

 Pre-built debian packages for ROS electric

to hydro, see www.ros.org/wiki/octomap

 ROS integration in packages octomap_ros,

octomap_msgs, and octomap_server

 Collision checks in FCL / MoveIt!

5

Map Update

 Occupancy modeled as recursive

binary Bayes filter [Moravec '85]

 Efficient update using log-odds

6

Map Update

 Clamping policy ensures updatability [Yguel '07]

 Update of inner nodes enables

multi-resolution queries

 Compression by pruning

a node’s identical children

7 [Kraetzschmar '04]

Sensor Model for Single Rays

end point

sensor origin

 Ray casting from sensor origin to end point

 Mark last voxel as occupied, all other voxels
on ray as free

 Measurements are integrated
probabilistically

 Implemented in OcTree::computeRay(...)
and OcTree::insertRay(...)

8

Sensor Model for 3D Scans

 Sweeping sensor, discretization into voxels

 Planes observed at shallow angle may
disappear in a volumetric map

 Solution: Update each voxel of a point cloud
at most once, preferring occupied endpoints

 Implemented in OcTree::insertScan(...)

9

Accessing Map Data

 Traverse nodes with iterators
 for(OcTree::leaf_iterator it = octree.begin_leafs(),

 end=octree.end_leafs(); it!= end; ++it)

 { // access node, e.g.:

 std::cout << "Node center: " << it.getCoordinate();

 std::cout << " value: " << it->getValue() << "\n";

}

 Ray intersection queries
 octree.castRay(...)

 Access single nodes by searching
 OcTreeNode* n = octree.search(x,y,z);

 if (n){

 std::cout << "Value: " << n->getValue() << "\n";

 }

10

Occupancy and Sensor Model

 Set occupancy parameters in octree
 octree.setOccupancyThres(0.5);

 octree.setProbHit(0.7); // ...setProbMiss(0.3)

 octree.setClampingThresMin(0.1); / ...Max(0.95)

 Check if a node is free or occupied
 octree.isNodeOccupied(n);

 Check if a node is “clamped”
 octree.isNodeAtThreshold(n);

11

Map File Format

 Full probabilities encoded in

.ot file format

 Maximum-likelihood map

stored as compact

bitstream in .bt file

 Exchange as ROS

message: octomap_msgs

package

2 byte

12

Map Visualization

 Native OctoMap
visualization:
octovis

 RViz:

 MarkerArray display from octomap_server

 octomap_rviz_displays

 MoveIt planning scene

13

Memory Usage (Freiburg campus)

14

Update and Query Times

Map update
(Avg. over 100000 points)

Traverse all leaf nodes

15

Example Use Case: Navigation in
Clutter with the PR2

[Hornung et al., ICRA '12]

Example Use Case: Localization
and Mapping with a Nao humanoid

[Maier et al., HUMANOIDS '12]

Conclusion

 Memory-efficient map data structure based
on Octrees

 Volumetric representation of occupied,
free, and unknown space

 Implementation of common map
functionality: sensor updates, raycasting, ...

 Open source implementation with
integration into ROS and MoveIt!

 Code, mailing list, and example data sets
available at octomap.github.io

18

Thanks for your attention!

