Motion Module for the Amazon Picking
Challenge 2016 - Team Delft

Mukunda Bharatheesha, Ruben Burger, Maarten De Vries,
Wilson Ko and Jethro Tan

August 22, 2016

The main responsibility of Team Delft’s motion module for Amazon Picking
Challenge (APC) 2016 is to ensure that our robot can move to all commanded
locations to accomplish both the picking and stowing tasks in the challenge.
The picking task consists of grasping an object of interest in the presence of
other objects in the bin and placing the grasped object into a tote. The stowing
task involves moving a certain object of interest in the tote to one of the bins
in the shelf. The setup in reality is shown in Fig. 1.

osoTICs

Figure 1: Team Delft Robot Setup for APC 2016.

The motion module is built on two fundamental motion primitives namely,
coarse motions and fine motions. Coarse motions are essentially offline gener-
ated trajectories between pre-defined start and goal positions in the operational
workspace of our system. On the other hand, fine motions involve online (carte-
sian) path planning for performing object manipulation in the bins or the tote.
In the following sections, these two primitives will be explained in further detail.



A full technical article on our motion module along with graphical represen-
tations of our pipeline, collision avoidance with Octomaps and all details of the
Movelt APIs we used will be made available in the coming months. The text
in this article is intended to provide a generic overview of our motion module.

1 Coarse Motions

The functional robot workspace for the APC is static. This forms the basis for
the coarse motion primitive. In other words, there are no dynamic obstacles (at
least in the challenge) that would obstruct the path of the robot after the robot
has started moving. Thus, we define a coarse motion primitive as a trajectory
that can be computed offline between a predefined start and goal location.

As a consequence, we implement a trajectory cache! which is populated with
trajectories between around 250 different start and goal configurations for the
robot. We call these configurations as Master Pose Descriptors. In principle,
these are robot joint states set at appropriate values in front of each bin of
the shelf. Our choice of having the camera mounted on the manipulation tool
(see Fig. 1 entailed that we have two master pose descriptors per bin, namely,
the camera master pose descriptor and bin master pose descriptor. Similar
master pose descriptors are also defined for the tote drop-off locations. All
trajectories that were used during APC 2016 were generated using RRT-Connect
randomized path planner via Movelt! The other planner option we tried was
RRT-star which did not have any significant benefit over RRT-Connect in the
given planning environment.

An example of a coarse motion trail from one of the bins to the home position
of our setup is shown in Fig. 2.

Figure 2: Coarse motion as a trail from “Bin D” to “Home”.

IThe use of cache is a misnomer because in the current implementation, we do not compute
a coarse motion online, if a requested coarse motion does not exist in the cache. A trajectory
database would have been a better name, in hindsight.



2 Fine Motions

Fine motions are the only part of the APC motion module that involve online
(cartesian) path planning. This idea is a simplified implementation of the ap-
proach in the standard pick and place pipeline of Movelt, where cartesian path
planning is used during the pre-grasp approach and the post-grasp retreat stage
of the pipeline.The simplification is the fact that we remove the evaluation of
the reachable and valid pose filter stage of the standard pick and place pipeline.
This process of finding and evaluating reachable and valid poses are done in a
two-step filtering. The first filtering step is done in the grasp synthesizer module
where impossible grasps are eliminated heuristically. The second filtering step
consists of multiple MoveGroup API calls to computeCartesianPath after some
key cartesian waypoints are evaluated for collisions using the getPositionIK
service. Further details on this step will be more coherent to read once the
following background information concerning our grasp strategy is explained.

It is important to highlight that, there is a serious limitation with our ap-
proach when we consider object manipulation inside a bin in general. This is
because, we disallow any kind of collision with neighbouring objects inside a
bin (or tote) and also end up in situations where no valid grasp candidates are
found. However, allowing for useful collisions with other objects in a bin is
certainly something we would consider in the future.

2.1 Grasp strategy

From a motion perspective, the grasp strategy for all objects in APC 2016 con-
sisted of a combination of linear segments. We call these segments as Approach,
Contact, Lift and Retreat. The segment names are indicative of the correspond-
ing motions that those segments are meant for. Once the cartesian pose of the
object of interest (for both pick and stow tasks), in a certain frame is estimated
by the pose estimation algorithm, the grasp synthesizer uses this pose to gen-
erate a set of key waypoints for the start and end of each segment and in some
cases more than just a pair of waypoints to limit any possibility of configuration
changes while manipulating the object in the bin. These cartesian waypoints
form an important input to the second step of grasp pose filtering and the fine
motion generation.

2.2 Motion segment generation

The key waypoints corresponding to Approach, Contact, Lift and Retreat along
with a potential grasp candidate are all input to the motion generation module
where the following checks are conducted to generate the complete sequence of
motions:

1. The grasp candidate, and the key waypoints are sequentially checked for
collision using the getPositionIK service call. If any one of them is
in collision, the corresponding grasp pose and the key waypoints are all
discarded due to collision.



2. Once all the key waypoints are collision free, each linear motion segment
is computed using the MoveGroup API, computeCartesianPath with col-
lision checking enabled. Similar action is taken if any of these segments is
in collision.

3. If all the linear motion segments are collision free, a final planning call is
done using the MoveGroup API, plan?. This is required because, the final
joint configuration at the end of the Retreat segment resulting from the call
to computeCartesianPath need not necessarily match the starting joint
configuration in front of the bin or tote from where the coarse motions
start. This is natural because of the redundancy in the system. The call
to plan is precisely to ensure that such a mismatch does not exist which
would otherwise lead to a motion safety violation?

These steps ensure that all the desired motion segments for manipulating
the object of interest are generated as required and are collision free. These
segments are now stitched together before being executed on the robot. The
stitching module is explained in the following section.

3 DMotion stitching and execution

The motion stitching module accepts all the motion segments that are generated
as explained in the previous section. Additionally, the coarse motion trajectories
from the corresponding bin to the tote drop-off location (or vice-versa for stow-
ing) are also input to the stitching module. The stitching process, in principle,
is just the process of combining the joint state configurations from each segment
into one single motion plan and time parameterizing it so that it results in a
executable trajectory for the robot. We use the computeTimeStamps from the
TrajectoryProcessing API for this purpose. This also allows us to use object
specific velocity scaling (for instance, moving at low speeds when carrying heavy
objects such as the dumbbell, socks and paper towels). An additional advan-
tage of stitching multiple motion segments is that we can get rid of overheads
such as goal tolerance checks at the end of each segment execution. This indeed
provided us quite a significant time gain while executing the motions.

The final and a critical component of our motion module is the I/O handling
to ensure the end effector (suction or pinch) is actuated at the right times along
the trajectory.

3.1 Input-Output (I/O) handling

In the setting of the APC, it is critical to ensure the I/O is activated accurately
and in a timely manner. For instance, the vacuum pump needs a couple of
seconds before full suction power is realized. However, turning the suction on

2RRT-Connect is used here as the planner configuration due to fast solution times.
3A motion safety violation is triggered whenever the starting configuration of the robot
does not match the starting configuration in the trajectory that is about to be executed.



too early can pose significant problems while approaching certain objects which
have a very light outer covering. Basically, the outer cover would get suctioned
in way too early before the approach is completed leading to either an unstable
or a failed grasp. In order to address this, we built a custom trajectory tracking
module based on the /joint_states topic.

The trajectory tracking module uses a gradient descent based approach to
detect events along the trajectory based on distance to key joint state waypoints.
These events and waypoints have a direct association to the key waypoints of
the motion segments that we described earlier. As a matter of fact, these events
are created exactly at the same point in the code where the key waypoints
are created for the motion segments. The term “event” is used to emphasize
that they are actual events along the trajectory such as beginning of approach
segment, beginning of contact segment, end of retreat segment and so on. All
these events also are used as feedback to evaluate the success or failure of a
grasp. For instance, the vacuum sensor is read at the end of the retreat from
the bin (or tote) to determine whether the grasp succeeded.

A commonly used alternative for I/O handling in Movelt is the definition of
I/0O as joints with minimal displacement and providing them target joint values
at appropriate times via regular planning calls. We do not use this approach as
it does not guarantee adequate synchronization with the events that we define
along the trajectory. Another note of caution is that the implementation of the
trajectory tracking module was not completely straight-forward considering the
limitation of only one AsyncSpinner per ROS Node.

Finally, the time parameterized trajectories are executed using the MoveGroup
API, execute.



