Ty
#/ PICKNIK

Movelt and the rest of ROS:

Perception, Control, and Simulation

ROSWorld October 2021 - Mobile Manipulation Workshop

Vatan Aksoy Tezer
Qvatanaksoytezer

Outline PTCKNIK

e A brief Overview of ROS Communication

e How does a mobile manipulator work, how
different pipelines connect?

e Navigation

e Perception

e Simulation and Control

A Brief Overview of ROS
Communication

Pub/Sub Basics |7 prcun

Pub/Sub Topics, Services and Actions are the primary communication patterns used in ROS and also
Movelt!

Helpful command line tools:

NODE

Message

Publisher

e rostopic list ros2 topic list
e rostopic echo <topic_name> ros2 topic echo
e rostopic hz <topic_name>

Understanding ROS2 topics

http://wiki.ros.org/ROS/Patterns/Communication
https://docs.ros.org/en/foxy/Tutorials/Topics/Understanding-ROS2-Topics.html

Remembering Actions |7 »rcxnix

Goal . :
Sarvice i NODE

Request m— — Action Sever

Response E Goal Service Server
Feedback Publisher
Result Service Server

Feedback
Topic

Action Client

Goal Service Client

Feadback Subscriber Result
Service

Result Service Clismt Request

NODE —= - Response

How does Movelt Communicate with ROS

init (self):
super{}. init ('follow joint trajectory action server')
self.]Dlﬂt tla]ectory publlsher = self. create _publisher(J
self. action server = ActionServer(
self,
FollowJointTrajectory
*/stretch controller/follow joint trajectory’,
self.execute_callback}

f execute callback(self, goal handle: server.ServerGoalHandle):

self. get 10gger(} 1nfo(Executing goal.

result = FollowlointTrajectory.Result()

trajectory = goal haﬂdle request.trajectory #

self. joint tla]ectory publisher.publish(trajectory)
goal handle.succeed()

return result

e f main[args:f_ e}z
(.init(args=args)
follou joint trajectory action server = Fo JointTraje
SDln(fOxlOv joint tra]ectory action Jer»er)

if name == ' main
main()

PICKNIK

Movelt Uses Actions to send
the robot / simulation
planned joint trajectories.
Typically Movelt is the client
and server is opened up by
ros(2)_control.

You can also use your own
FollowdJointTrajectory server
as well!

How does a mobile
manipulator work, how
different pipelines connect?

Mobile Manipulation Work Cycle

nav2 / sensor nodes

knowledge,
data base

B
l'l PICKNIK

mission
commands

“pOSIlIOﬂ“

envi odel
ocal map
I

Movelt Perception /

sensor nodes ol

Extraction
T

raw data

Sensing

Perception

global map

nav2 / Movelt 2
V)

Path
Execution
I
actuator

commands

Motion Contro

ros2_control /
Ignition Gazebo

Credit: ETH Zurich Mobile Robot Lecture Notes: https://asl.ethz.ch/education/lectures/autonomous mobile robots.html

https://asl.ethz.ch/education/lectures/autonomous_mobile_robots.html

-
I'I PICKNIK

Perception

Movelt Calibration

Path Conatraiats

“L000 o

Target_Creste_tave

wrie B inkink

B
u-arag_dgkm:

camera_color_optical_frame |

tool0_controller_
usy

PICKNIK

Perform hand-eye
calibrations in RViz

Generate a target
image to print

Move arm, acquire 5+
sample poses

Export EEF->camera
transform

Octomap and Collision Awareness PICKNIK

3D occupancy map
for collision checking

Update from depth
map or point cloud

-
I'I PICKNIK

Navigation

PICKNIK

Mobile Base Planning in Movelt 2

Holonomic movements were supported for a long time (quadcopters, holonomic robots)
Stretch is a differential drive robot so PickNik has added a new differential drive motion model to

the planar joints.
Basically a virtual joint defined in SRDF that publishes valid cmd_vel commands.

name="position" type="planar" parent frame="odom" child link="base link"
joint name="position" property name="motion model" value="diff drive"
distance" value="0.05" />

joint name="position" property name="min translational

8B e

Using nav2 with Movelt 2 |7 prckniK

Movelt 2 perception pipeline support PointCloud messages that LIDARs usually publish.

But, in navigation we might want to take more than pointclouds: such as inflation layer.

Movelt 2 does not support navigation layers and is not meant to be a replacement for
navigation2.

Using nav2_simple_commander we can give the Movelt generated waypoints and let nav2
execute the trajectory for us instead of Movelt if desired.

Using nav2 with Movelt 2

execute callback (self, goal handle: server.ServerGoalHandle) :
self.get logger () .info ('Executing goal..."')

result = FollowJointTrajectory.Result ()

trajectory = goal handle.request.trajectory

self. joint trajectory publisher .publish (trajectory)

multidof trajectory = goal handle.request.multi dof trajectory
goal pose = PoseStamped ()

goal pose.header.frame id = "odom"

goal pose.header.stamp = self.get clock () .now().to msg()

.transforms| .translation.

(
goal pose.pose.position.x multidof trajectory.points[-1
[-1

goal pose.pose.position.z multidof trajectory.points[-1
S

0
goal pose.pose.position.y multidof trajectory.points .transforms[0] .translation.
0

.transforms|[

.transform .rotation.

]

]

] .translation.
goal pose.pose.orientation. multidof trajectory.point s
s

goal pose.pose.orientation. multidof trajectory.points .rotation.

goal pose.pose.orientation. multidof trajectory.points .transforms .rotation.

]
]
]
[
[
[
[

1]
1].transform
1]

goal pose.pose.orientation. multidof trajectory.points([-1].transforms .rotation.

print ("Target pose:", goal pose.pose)

self.nav.goToPose (goal pose)

goal handle.succeed ()

return result

Simulation and Control

Stretch's Sensors

Head
o Intel Realsense D435i
o 4 channel ReSpeaker MicArray
V2.0
o 8W stereo audio out w/volume
adjust
Base

o RPLidar A1
o 9 DoF IMU
Wrist
o 3 DoF Accelerometer
Force sensing (via motor current) on
arm and lift
Aruco tags

B,
E“ﬁ PICKNIK

PICKNIK

Stretch's Sensors

e Most of the sensors are ported and working quite well in
Ignition Gazebo.

e Use gazebo and sensor tags, same with ROS and Gazebo
Classic.

e Realsense, LIDAR and all the IMUs are simulated.

e Force sensing not implemented yet but now possible with
Ignition Fortress!

e ReSpeaker MicArray not simulated but possible through a
ROS2 node that connects to simulator PC’s microphone and
speaker.

Simulating and Controlling Stretch in Ignition Gazebo and ROS 2

Here is what changed since ROS1 and Gazebo Classic:

e You can still use xacros or urdfs

B
I"I PICKNIK

e You can still use gazebo tags (sensor etc.) in xacros (see 5 o e e e e s -

http://sdformat.org/spec?elem=sensor&ver=1.8 for sensor
parameters)

e You might need to add some system plugins to your world file

e Joint trajectory plugin is great to control joints, joint states !
plugin is great publishing joint states until ign_ros2_control &
here - @
https:/github.com/ignitionrobotics/ign_ros2_control/pull/1. = I

e Tune gains from joint_trajectory plugin until ros2_control
arrives. e/ L29|

e ign_ros_bridge for ROS <-> IGN communication

e Porting existing worlds is super easy to Ignition (See
aws_robomaker_small_house in action!)

http://sdformat.org/spec?elem=sensor&ver=1.8
https://github.com/ignitionrobotics/ign_ros2_control/pull/1

PICKNIK

https://twitter.com/PickNikRobotics

