
MoveIt and the rest of ROS:
Perception, Control, and Simulation

ROSWorld October 2021 - Mobile Manipulation Workshop

Vatan Aksoy Tezer
 vatanaksoytezer

Outline

● A brief Overview of ROS Communication
● How does a mobile manipulator work, how

different pipelines connect?
● Navigation
● Perception
● Simulation and Control

A Brief Overview of ROS
Communication

Pub/Sub Basics

Pub/Sub Topics, Services and Actions are the primary communication patterns used in ROS and also

MoveIt!

Helpful command line tools:

● rostopic list ros2 topic list
● rostopic echo <topic_name> ros2 topic echo
● rostopic hz <topic_name>

Understanding ROS2 topics

http://wiki.ros.org/ROS/Patterns/Communication
https://docs.ros.org/en/foxy/Tutorials/Topics/Understanding-ROS2-Topics.html

Remembering Actions

● MoveIt Uses Actions to send
the robot / simulation
planned joint trajectories.

● Typically MoveIt is the client
and server is opened up by
ros(2)_control.

● You can also use your own
FollowJointTrajectory server
as well!

How does MoveIt Communicate with ROS

How does a mobile
manipulator work, how

different pipelines connect?

Mobile Manipulation Work Cycle

Credit: ETH Zurich Mobile Robot Lecture Notes: https://asl.ethz.ch/education/lectures/autonomous_mobile_robots.html

MoveIt Perception /
sensor nodes

ros2_control /
Ignition Gazebo

nav2 / sensor nodes

nav2 / MoveIt 2

https://asl.ethz.ch/education/lectures/autonomous_mobile_robots.html

Perception

MoveIt Calibration

Perform hand-eye
calibrations in RViz

Generate a target
image to print

Move arm, acquire 5+
sample poses

Export EEF->camera
transform

Octomap and Collision Awareness

3D occupancy map
for collision checking

Update from depth
map or point cloud

Navigation

Mobile Base Planning in MoveIt 2

● Holonomic movements were supported for a long time (quadcopters, holonomic robots)
● Stretch is a differential drive robot so PickNik has added a new differential drive motion model to

the planar joints.
● Basically a virtual joint defined in SRDF that publishes valid cmd_vel commands.
● <virtual_joint name="position" type="planar" parent_frame="odom" child_link="base_link"/>

<joint_property joint_name="position" property_name="motion_model" value="diff_drive" />
<joint_property joint_name="position" property_name="min_translational_distance" value="0.05" />

Using nav2 with MoveIt 2

● MoveIt 2 perception pipeline support PointCloud messages that LIDARs usually publish.
● But, in navigation we might want to take more than pointclouds: such as inflation layer.
● MoveIt 2 does not support navigation layers and is not meant to be a replacement for

navigation2.
● Using nav2_simple_commander we can give the MoveIt generated waypoints and let nav2

execute the trajectory for us instead of MoveIt if desired.

Using nav2 with MoveIt 2

 def execute_callback(self, goal_handle: server.ServerGoalHandle):
 self.get_logger().info('Executing goal...')
 result = FollowJointTrajectory.Result()
 trajectory = goal_handle.request.trajectory # type: JointTrajectory
 self._joint_trajectory_publisher.publish(trajectory)
 multidof_trajectory = goal_handle.request.multi_dof_trajectory # type: MultiDOFJointTrajectory
 goal_pose = PoseStamped()
 goal_pose.header.frame_id = "odom"
 goal_pose.header.stamp = self.get_clock().now().to_msg()
 goal_pose.pose.position.x = multidof_trajectory.points[-1].transforms[0].translation.x
 goal_pose.pose.position.y = multidof_trajectory.points[-1].transforms[0].translation.y
 goal_pose.pose.position.z = multidof_trajectory.points[-1].transforms[0].translation.z
 goal_pose.pose.orientation.x = multidof_trajectory.points[-1].transforms[0].rotation.x
 goal_pose.pose.orientation.y = multidof_trajectory.points[-1].transforms[0].rotation.y
 goal_pose.pose.orientation.z = multidof_trajectory.points[-1].transforms[0].rotation.z
 goal_pose.pose.orientation.w = multidof_trajectory.points[-1].transforms[0].rotation.w
 print("Target pose:", goal_pose.pose)
 self.nav.goToPose(goal_pose)
 goal_handle.succeed()
 return result

Simulation and Control

Stretch’s Sensors

● Head
○ Intel Realsense D435i
○ 4 channel ReSpeaker MicArray

V2.0
○ 8W stereo audio out w/volume

adjust
● Base

○ RPLidar A1
○ 9 DoF IMU

● Wrist
○ 3 DoF Accelerometer

● Force sensing (via motor current) on
arm and lift

● Aruco tags

Stretch’s Sensors

● Most of the sensors are ported and working quite well in
Ignition Gazebo.

● Use gazebo and sensor tags, same with ROS and Gazebo
Classic.

● Realsense, LIDAR and all the IMUs are simulated.
● Force sensing not implemented yet but now possible with

Ignition Fortress!
● ReSpeaker MicArray not simulated but possible through a

ROS2 node that connects to simulator PC’s microphone and
speaker.

Simulating and Controlling Stretch in Ignition Gazebo and ROS 2

Here is what changed since ROS1 and Gazebo Classic:

● You can still use xacros or urdfs
● You can still use gazebo tags (sensor etc.) in xacros (see

http://sdformat.org/spec?elem=sensor&ver=1.8 for sensor
parameters)

● You might need to add some system plugins to your world file
● Joint trajectory plugin is great to control joints, joint states

plugin is great publishing joint states until ign_ros2_control is
here
https://github.com/ignitionrobotics/ign_ros2_control/pull/1.

● Tune gains from joint_trajectory plugin until ros2_control
arrives.

● ign_ros_bridge for ROS <-> IGN communication
● Porting existing worlds is super easy to Ignition (See

aws_robomaker_small_house in action!)

http://sdformat.org/spec?elem=sensor&ver=1.8
https://github.com/ignitionrobotics/ign_ros2_control/pull/1

Putting Everything Together with
Guided Exploration!

Vatan Aksoy Tezer

vatan@picknik.ai

PickNik Robotics
picknik.ai
Colorado, USA

@picknikrobotics

Thanks!

https://twitter.com/PickNikRobotics

